Аннотация. Бернхард Риман, в своей инаугурационной диссертации «Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse"(1851), ставит вопрос о граничном поведении голоморфных функций — вопрос Римана, уточнённый и обобщённый Гильбертом, мы называем сегодня проблемой Римана-Гильберта — и тем полагает, по слову Н. К. Никольского, краеугольный камень в основание будущей теории операторов Тёплица. Задачу Римана-Гильберта, следуя пионерским работам Юлиана Васильевича Сохоцкого в Санкт-Петербурге, подробно исследовали в Москве Николай Николаевич Лузин и Иван Иванович Привалов.
Отто Тёплиц, классик теории операторов, не занимался, однако, операторами, носящими сегодня его имя. Систематическое изучение операторов Тёплица начал, по-видимому, Габор Сегё, и первая теорема Сегё, вместе с её обобщениями, данными Андреем Николаевичем Колмогоровым и Марком Григорьевичем Крейном, будет отправной точкой наших рассмотрений. Мы обратимся затем ко второй теореме Сегё, определяющей асимптотику детерминантов Тёплица, и к формуле Бородина—Окунькова—Джеронимо—Кейса, дающей остаточный член во второй теореме Сегё. Детерминанты Тёплица возникают в самых разных задачах, а у теорем Сегё, как и у формулы Бородина—Окунькова—Джеронимо—Кейса, есть очень разные доказательства: аналитические, алгебраические, вероятностные. Особый акцент будет поставлен в курсе на приложения операторов Тёплица к детерминантным точечным процессам, возникающим при изучении случайных матриц и в асимптотической комбинаторике.